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General relation for stationary probability density functions

J. Mi and R. A. Antonia
Department of Mechanical Engineering, University of Newcastle, New South Wales 2308, Australia
(Received 27 January 1995)

A linear relation between a normalized, time (¢) dependent, statistically stationary quantity (z) and the
normalized conditional expectation (r) of 3%z /3t? allows 7 to generally satisfy two conditions subject to
the stationarity requirement. Experimental data for both temperature and vorticity in several turbulent
flows indicate that this relation appears universal. As a result, the exact expression derived by Pope and
Ching [Phys. Fluids A 5, 1529 (1993)] for the probability density function (PDF) of any stationary quan-
tity should generally reduce to the simpler form obtained by Ching [Phys. Rev. Lett. 70, 283 (1993)].

PACS number(s): 47.27.Nz, 02.50.Ey, 05.40.+j

Recently, Pope and Ching [1] obtained an exact expres-
sion for the probability density function (PDF) of any
normalized fluctuating quantity z measured in a general
stationary process, in terms of conditional expectations of
its time derivatives. The expression is

9 zr(z')
p(2) exp fo q(z’)dz (1)

q(z)

Here,
z2=(Z—(ZN/{(Z—(Z))*)'"?,

where Z is the instantaneous quantity and { ) denotes a
time average. C is a constant determined by the condi-
tion f * P (2)dz=1, and ¢ (z) and r(z) are given by
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respectively. In (2) and (3), z, =9z /3t and z , =3’z /3t>
and (Q|z) (Q=z? or z ,) is the expectation of Q condi-
tioned on a particular value of z. Equation (1) imposes
only two (weak) conditions: z(z) is twice differentiable
and p (z) decreases sufficiently rapidly as |z|— . Obvi-
ously, these conditions are generally satisfied by most tur-
bulent quantities (e.g., velocity, temperature, concentra-
tion, mass fraction, vorticity).

Prior to the derivation of Eq. (1), Ching [2] obtained,
on the basis of the work by Sinai and Yakhot [3],

z z'
_fo q(z')dz

for both the temperature fluctuation 6 and its time
difference A6 [=6(t +7)—6(t)], by assuming (z?")
=02n —1){z?""2%2)  (where z=B/{B*)'? and
y=B,/{B%)!"* B stands for either 6 or Af). Equation
(4) is identical to Eq. (1) if

(Z)=Lex
P q(z) P
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rizy=—z . (5)

Using the convective turbulence temperature data of
Heslot, Castaing, and Libchaber [4], Ching found that (4)
works well for both 6 and A@ (when 7 is large). Pope and
Ching [1] later confirmed that this is due to Eq. (5) being
valid for the turbulence data. In the present paper, Eq.
(5) is shown to be the solution for r(z) which generally
satisfies two conditions (see below) subject to z satisfying
stationarity. Experiments in several (stationary) tur-

(a)

FIG. 1. Verification of Eq. (5) using (a) temperature and (b)
spanwise vorticity fluctuations. Cylinder wake (40 diameters
downstream of the cylinder and on the centerline): O,
z2=0/(6*)""%; V, w;/{»3)"%. Boundary layer (0.0126 from the
wall, where 8 is the boundary layer thickness): +, 8/(6?)!/2.
Round jet (30 nozzle diameters downstream of the jet exit and
on the axis): [, 6/(6%*)'/2. , Eq. (5); — — —, Eq. (14)
with n =1and a=V2.
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FIG. 2. The PDF of z=w;/{®3)!/? on the wake centerline.
O, measurement; +, calculation. , p2)=(1/V2)
exp(—V2|z]).

bulent flows appear to point to the universality of this
solution.
Differentiating z? twice with respect to time, we obtain

(22)’,,=2[z’2,+zz’,,] . (6)
Averaging (6) with respect to time yields
(z2) o)

since (z?),)=(z?) ,=0 for any stationary quantity.
Using the definition of the conditional PDF (e.g., [5]), it
can be shown that

(zz ,)=—

(z(z ,|z))=(zz,) . (8)
It follows from (3), (7), and (8) that

(zr(z))=—1. )
In addition, the time average of r(z) is zero, i.e.,

(r(z))=0, (10)
since

(r(2)) =Lz ,1z) /(2% )=(z%) "z ,)

and {z ,)=0. Equations (9) and (10) are identities for
the general stationary quantity z(z). Recalling that
(z2) =1 (the normalization condition) and

(F(2))=[" Fz)p(2)dz ,

where F(z) is a function of z, (9) and (10) may be rewrit-
ten as

f_wwz[r(z)+z]p(z)dz=0 an
and

f_:r(z)p(z)dzzo ) (12)
Obviously, (11) and (12) are both satisfied if

r(z)=—z,

i.e., Eq. (5) is a mathematical solution for ». This solution
allows 7 to generally satisfy (10) and (11), regardless of the
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FIG. 3. Variation of g with z one the wake centerline. O,
z=w;/{})'% +,0/(6*)' .

particular form of p(z). Therefore, if there exists a
universal relation for 7, it could be (5). As mentioned ear-
lier, Pope and Ching [1] provided some experimental evi-
dence in support of (5). To further test the validity of (5),
we estimated 7 using temperature (6) and spanwise vorti-
city (w;) data obtained [6] in three turbulent shear flows:
a boundary layer over a rough wall, the wake of a circu-
lar cylinder, and a round jet. As shown in Fig. 1, Eq. (5)
is quite well satisfied by both z=6/(6*)!/2 and
z=w;/{®})'"? in all three flows. The large scatter at
large |z| is associated with the small probability of oc-
currence of large values of |z|. We also estimated » when
z=A0/{(A0)?)1/? for several values of 7; the results (not
shown) were in close agreement with (5).

It is possible that there may be other mathematical
solutions for r aside from (5), when p(z) assumes some
symmetrical forms. For example, if

p(Z)Z%CXp(—a|Z|), a>0, (13)
(11) and (12) are valid when either r(z)=—z or
2
rz)= 2a mA1_pm—1_, (14)

(2n +2)1°

where the integer n is greater than or equal to 1. Physi-
cally, however, the solution for » must be unique [this
also applies to g (z) and p (z)]. It follows that, even when
p(z) assumes the form described by (13), solutions (5) and
(14) cannot both be valid. Figure 2 shows that the PDF
of z=w;/{w3)'/? on the wake centerline (40 diameters
downstream of the cylinder) is adequately described by
(13) with @ =V'2 [note that the calculation, based on Eq.
(4), is in good agreement with measurement]. Yet the
corresponding data for r closely follow (5) and not (14)
[see Fig. 1(b)]. This, together with evidence presented in
[1] and Fig. 1(a), and the observation that the statistical
correlation between 7 and z is generally described by (9),
all point to the likely universality of (5). By contrast,
however, the level of correlation between g and z (Fig. 3)
shows that there is a significant difference in g for two
choices of z in the wake. The nonuniversality of g would
be consistent with the nonuniversality of p.

Pope and Ching [1] showed that Eq. (5) is not satisfied
by the Lorenz model [7] and by convective turbulence
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data [4] for AO when T is small. This is not surprising be-
cause the Lorenz model and the small 7 data shown in
Figs. 1(b) and 2(a) of [1] do not satisfy both (11) and (12).
In general, the measured difference (A6),, is noise con-
taminated, i.e., (A@),, =AO-+n, where AO is the true

difference and n represents the noise contribution. As
7—0, A0—0 and n makes a major contribution to (A6),,
[6]. Such data of (A6),, cannot therefore well satisfy
both (11) and (12); as a consequence, Eq. (5) is more
strongly violated near AG=0 when 7 is smaller.

[1] S.B. Pope and E. S. C. Ching, Phys. Fluids A 5, 1529
(1993).

[2] E. S. C. Ching, Phys. Rev. Lett. 70, 283 (1993).

[31Y. G. Sinai and V. Yakhot, Phys. Rev. Lett. 63, 1962
(1989).

[4] F. Heslot, B. Castaing, and A. Libchaber, Phys. Rev. A

36, 5871 (1987).

[5] S. B. Pope, Prog. Energy Combust. Sci. 11, 119 (1985).

[6] R. A. Antonia and J. Mi, J. Fluid Mech. 250, 531 (1993); J.
Mi and R. A. Antonia, Expt. Therm. Fluid Sci. 8, 328
(1994); H. S. Shafi et al. (unpublished).

[7] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).



